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Abstract

Three control law design techniques for flutter suppression are pre-

sented. Each technique uses multiple control surfaces and/or sensors. The

first method uses traditional tools (such as pole/zero loci and Nyquist dia-

grams) for producing a controller that has minimal complexity and which

is sufficiently robust to handle plant uncertainty. The second procedure

uses linear combinations of several accelerometer signals and dynamic

compensation to synthesize the modal rate of the critical mode for feed-

back to the distributed control surfaces. The third technique starts with a

minimum-energy linear quadratic Gaussian controller, iteratively modifies

intensity matrices corresponding to input and output noise, and applies
controller order reduction to achieve a low-order, robust controller. The

resulting designs have been implemented digitally and tested subsonically

on the active flexible wing wind-tunnel model in the Langley Transonic Dy-

namics Tunnel. Only the traditional pole/zero loci design was su]ficiently

robust to errors in the nominal plant to successfully suppress flutter dur-

ing the test. The traditional pole�zero loci design provided simultaneous

suppression of symmetric and antisymmetric flutter with a 2_-percent in-

crease in attainable dynamic pressure. Posttest analyses are shown which

illustrate the problems encountered with the other laws.

Introduction

Aircraft designs that emphasize thc reduction of

structural weight to maximize efficiency and agility
increase tile likelihood that active flutter suppres-

sion will be needed to remove structural dynamic

instabilities. In such cases, active flutter suppres-

sion can potentially enable achievement of enhanced

performance with lower weight. Developing methods

to suppress flutter and reduce structural loads has

been an objective of the active flexible wing (AFW)

program.

Active controls, with flutter suppression as a spe-

cific example, are recognized to provide maximum

performance benefits when their impact is considered

early in the aircraft design process. Providing a com-

plete summary of the current status of active controls
research is beyond the scope of this paper; however,
selected references are cited which arc representative

of published work in the areas of flutter suppression

and gust load alleviation (refs. 1 to 29). A refer-
ence describing the historical development of flutter

research is also cited (ref. 30).

This paper describes the design, test, and eval-
uation of three flutter suppression control laws.

The designs were part of a joint effort by Langley
Research Center and Rockwell International Cor-

poration to validate analysis and synthesis metho-
dologies through the development of digital

multi-input/nmlti-output control laws for an

aeroelastie wind-tunnel model (refs. 31 and 32). The
test vehicle used in this effort is the Rockwell AFW

wind-tunnel model (ref. 33), which was modified from

its initial configuration through the use of wing tip
stores containing destabilizing mass ballast. Tile test

results described in this paper refer to a model entry

in tile Langley Transonic Dynamics lSmnel (TDT)
in November 1989. A subsequent test was per-

formed in March 1991 during which four flutter sup-

pression control laws were successfully tested during
steady flight and while performing aggressive rolling

maneuvers (refs. 34 to 37).

The wind-tunnel model, test operating con-

straints, tunnel turbulence model, uncontrolled flut-

ter characteristics, and controller design constraints

are described to provide an understanding of the con-

troller design problem. The design objective is to
control flutter to the tunnel linfit without saturating

control power capabilities.

Three controllers have been designed, all of which

use multiple control surfaces and/or sensors. The
first controller uses traditional tools (pole/zero loci

and Nyquist diagrams, ref. 38); the second uses
accelerometer output blending and control com-
mand distribution to obtain an estimate of the flut-

ter mode rate for feedback (refs. 11, 19, and 25).

The third controller uses linear quadratic Gaussian

(LQG)/loop transfer recovery (ref. 39) plus order re-

duction (ref. 40). The design approach for each is
described, and predicted controller performance is



shown.Test resultsarealsodiscussedwhichshow
that only the traditionalpole/zeroloci designwas
sufficientlyrobustto modelingerrorsto suppressflut-
ter duringthetest. Posttestanalysesarepresented
whichexplaintile problemsthat wereencountered
with theotherlaws.
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parameter in washout filter element
in control laws

filter parameters in modal rate

feedback control law (see fig. 9)

parameters in rational transfer
function representation of jth
actuator

wing semispan of wind-tunnel
model

matrix of sensor blending coeffi-

cients (see eq. (4))

output of sensor blending operation

(see fig. 9)

= HdF d (see eq. (3))

= HdG d + E d (see eq. (3))

matrix defining distribution of

pseudo-control command to physical
control surfaces (sec eq. (4))

scalar multiplier defining proportion

of control command _TE()c that is

to go to 6TE L (see eq. (1))

control law feedthrough term (see

eqs. (3) and (9))

control law system matrix (see

eqs. (2) and (9))

frequency, Hz

control law input matrix (see

eqs. (2) and (9))

acceleration due to gravity

control law matrix relating outputs

to states (see eqs. (3) and (9))

identity matrix

=,/=f

augmented function to be mini-

mized in design of modal rate feed-

back control law (see eq. (7))

K1, K_ Ka

k

kl , k2

k_

k+

_+

M_

rtz i

R

control law transfer matrices (see

eqs. (1), (4), and (9))

gain in desired transfer fimction at
single strand point (see eq. (6))

scalar feedback gains in control laws

(see eqs. (1) and (4))

smallest magnitude intersection of

loop transfer function with negative
real axis to left of the -1 point

(see fig. 11); the larger k is the
more tolerant the system is to gain
deerea.se

largest magnitude intersection of

loop transDr flmction with negative
real axis to right of the -1 point

(see fig. 11); the smaller k+ is the
more tolerant the system is to gain
increase

smallest magnitude angle between

negative real axis and intersection
of loop transDr function with
unit circle in either of first two

quadrants (see fig. 11); the larger

O- is the more tolerant the system
is to errors in lead

smallest magnitude angle between

negative real axis aim intersection
of loop transDr fimction with

unit circle in either quadrant 3 or

quadrant 4 (see fig. tl); the larger
0+ is the more tolerant the system

is to errors in lag

controller/generalized coordinate

mass coupling matrix

ith diagonal element of generalized
m&ss matrix

number of controls used in law (see

eq. (7))

second-order notch filters that make

up band-rejection filter

nmnber of frequencies (see eq. (7))

design plant transfer matrices (see

figs. 6, 9, and 13)

dynanfic pressure

generalized aerodynmnic force
matrices

desired transfer fimction at single-

strand point (see eq. (6))
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Laplace variable

time between samples

matrix defining dynamic portion
of modal rate feedback control law

(see fig. 9)

analytically prcdicted loop transfer
function at single-strand point in
modal rate feedback control law

(see eq. (5))

rational transfer function approxi-

mation of jth actuator

pseudo-control command (see fig. 9)

output of digital control law at kth

time step (see eq. (2))

fluid velocity

weight associated with violation of

ruth actuator rate constraint (see

cq. (7))

weight associated with cost .1 (see
oq. (7))

gust velocity

general and reference streamwise
coordinate

discrete controller state at kth time

step

contimlous controller state for LQG

law (see eq. (9))

spanwise coordinate

input to digital control law at kth

time step (see eq. (2))

vector of accelerometer outputs

achieved and desired flutter modal

rate (see figs. 9 and 10)

incremental angle of attack due to
turbuhmce

vector of control surface deflections

Kronecker dctta with value 0 for

distinct indices and 1 if j = k

Dirac delta with properties:

6(a_, - w0) = 0 if w :/_0 and

.f__ f(w) _(_' - _l)) d_ = f(wl,)

rms coinmandcd rate for ruth

actuator

(

(7

O'9 s , CrgA

od

damping ratio

wtfite-noise input into Dryden filter

singular value

rms symmetric and antisymnlctric

turbulence velocities, rospectively

time delay

Dryden turbulenco power spoctral
density

frequency, rad/sec

broak frequency in l)rydem tm'bu-

lellcO rtq)lesent at ion

Su|)scripts:

A antisymmetric

C COllinlalld(_d

D denominator

d (tigital i'epr(_sentation of comrolh,r

f flutter

n. natural fl'equency

N ll/lnler_.tt or

S symmetric

Notation:

(_)

(-)

( )

Bold syint)ols refer to matrix or vector (tuantitites.

bar under symbol indicates that it

is a minimum ()f ( )

bar over synfi)ol indicates that it is
a maximum of ( )

(tot. over symbol indicates time

derivative of ( )

Abbreviations:

A

AAF

AFS

AFW

BRF

conj

CPE

D

analog

antialiasing filter

active fluttor sui)Pr(.ssion

active flexible wing

I)and-r(\jection filter (see eq. (8))

conjugate

controller performance evahmtion

digital

3
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dof degree of freedom

DNOT notch filter to be implemented

digitally (see "Modal Rate Feedback
Control Law Definition" section of

appendix)

INT1, INT2 stable integrators (see "Modal Rate
Feedback Control Law Definition"

section of appendix)

LEI leading edge inboard

LEO leading edge outboard

LQG linear quadratic Gaussian

max maximum

MIMO multi-input/multi-output

rain minimum

MISO multi-input/single output

PSD power spectral density

rms root mean square

SISO single input/single output

TDT Transonic Dynamics Thnnel

TEI trailing edge inboard

TEO trailing edge outboard

TIP wing tip

WOF washout filter (see "Modal Rate
Feedback Control Law Definition"

section of appendix)

AFW Wind-Tunnel Model and Test

Conditions

Wind-Tunnel Model

The AFW wind-tunnel model is a full-span, sting-
mounted, wind-tunnel model that can roll about the

sting axis (fig. 1). For tile flutter suppression testing

described herein (the TDT entry in November 1989),
the AFW wind-tunnel model was prevented from

rolling by applying a locking pin. The model has a
six-degree-of-freedom force and moment balance on

the load path to the sting and an actuator that can be

used to adjust the model angle of attack. Four pairs

of control surfaces exist with hinge lines near the
one-quarter- or three-quarter-chord locations. The

actuators for the control surfaces and for the angle-
of-attack adjustment are powered by an onboard

hydraulic system. The model fuselage is more rigid
than the wings. However, the sting undergoes small

vertical and lateral translations as well as angular
twisting about the sting axis.

L-89-12,445
Figure 1. Active flexible wing (AFW) model in wind-tunnel

test section.

Each of the three control law designs used a subset

of four pairs of accelerometers and four pairs of con-

trol surfaces (fig. 2). Strain gauges on the wing were
also available, but they were not used for flutter sup-

pression during the 1989 tests. A digital computer

implemented the controller that processed the sig-
nals from the accelerometers to generate commands

for the control surface actuators; this process actively
suppressed flutter. Signal transmission between the

digital controller and the analog sensors and actua-

tors required low-pass analog filters (to reduce, alias-
ing) as well as analog-to-digital and digital-to-analog
conversions•

Roll /Tip ballast

_brak

_store

controller

Figure 2. Sketch of AFW wind-tunnel model.

The original configuration of the AFW wind-

tunnel model was previously tested using multiple

control surfaces (ref. 41) to study rapid rolling ma-
neuvers for a model with a soft, flexible wing. This

configuration did not flutter within the operating



rangeof tile TDT. For the study describedhere,
tip storescontainingmassballastwereaddedto the
AFW. Tile ballast lowered the frequency of the first
torsion mode (bringing it closer to the frequency of

tile first bending mode) and, thereby, reduced the

dynamic pressure at which flutter occurs to within

the operational range of the wind tunnel.

The tip ballast stores, which are normally coupled

in torsion with the wing via. a hydraulic brake, can

be decoupled by' releasing the brake, thereby leaving
the stores restrained in torsion by only a soft spring.

Upon brake release, the deeoupled configuration has

flutter-free characteristics to a much higher dynanfic

pressure than those shown in figure 3 for the coupled

case. Thus, the tip ballast stores utilize the deeoupler

pylon concept (ref. 42) to also provide a flutter-

stopper capability. A more complete discussion of
the tip ballast stores can be found in re%rence 43.

Wind-Tunnel Conditions

The Langley TDT, which is specially configured

for testing aeroelastic inodels (ref. 44), is a sealable

wind tunnel in which Math nmnber and dynamic

pressure can be varied independently by changing

motor speed while sinnfltaneously changing stagna-

tion pressure in the tunnel through the use of pumps.
For the 1989 test, air was the test medium, and the

tunnel was operated in an unsealed condition at at-

mospheric pressure. The Inaximunl dynanfic pres-
sure achievable in this mode was variable because

it was dependent upon atmospheric conditions. At
standard atmost)heric pressure, a nmximum dynamic

pressure of approximately ;{25 psf could be generated

at a Maeh munber of 0.5 (fig. 3). Higher Mach nmn-

hers required air to be pumped from the tulmel to
reduce the stagnation pressure.

400 _ Tunnel limit of 325 psf

t3o 
¢_300 Predicted

percent Antisymmetric o-en Io--

'200 / • I _ -' flutter

_ Operating range for100 . .
_, estlng

/ f-o. 
0 .2 .4 .6 .8 1.0 1.2

Mach number

Figure 3. Wind-tunnel test, conditions with air as test

medium and predicted flutter characteristics for coupled

configuration.

A test plan was developed which maximized the

demonstra|)le increase in closed-loop flutter dynamic

pressure and allowed rapid progression between test

points. Each closed-loop test. run was made at.

atmospheric pressure and was planned to reach
a Maeh nunlber of 0.5 at the maxinmm achiev-

able dynamic pressure (fig. 3). On the test path,

both Mach nmnber and dynamic pressure were si-
multaneously varied by increasing the fan motor

speed. The Mach number variation was accept-
able because Math nmnber effects in the low sub-

sonic region were small. A rapid progression be-

tween test t)oints was nmde possible by operating in

this lno(te. Running at a fixed Math number, which

would involve pmnping air out or bleeding air into
a sealed tunnel, would have been less eiticient for

obtaining closed-loop data.

Win(t-tunnel turbulence had a significant impact

on the AFW wind-tunnel model response. Conse-

quently, critical h)ads were monitored during the test,
and test runs we.re terminated when a load exceeded

a t)reset maximum amplitude. Prior to the test an(t
t)ased upon earlier tunnel entries, the turbuh'nee was

estimated to have a root-nman-square (rms) velo('ity

of 1 ft/sec, a maximmn intensity at. 10 Hz, and an

apt)ortionment that was 85 percent symmetric and

15 percent antisynmmtric.

Mathematical Modeling

Linear aeroelastic descriptions for the symmetric

and antisymmetric boundary conditions were gen-

erated using the Interaction of Structures, Aero-

dynamics, and Controls (ISAC) system of programs
(ref. 45). The (toublet lattice aero(lynanfic the-

ory was used (ref. 46). In addition, these models

were eonfl)ine(l with emt)irical data to form a whole-

aircraft, model for a batch simulation (ref. 47) which

considered quantization, computational delays, actu-
ator position and rate limits, and asymmetries caused

by differences/)etween individual actuators.

Actuators

Frequency responses for the eight individual ac-
tuators were measured with no air flow and with

the wing elastic motion restrained. In the frequency

range of interest, third-order transfer flmctions, with

parameters optimized in a least-squares sense, pro-

dnced good fits with the measured frequency re-

sponse data. In general, right and left. members of an

actuator pair require(t different t)arameters to achieve
a good fit, and, therefore, they were modeled in this
manner. All the actuator transfer functions had the

following form:

5j kdj adj 022

_2(., + ,)



where kdj is tile steady-state gain, adj is the first-

order pole location, _dj is tile danlping ratio of the

complex pair, and codj is tile natural frequency of
the complex pair. The physical origin of these pa-

rametcrs is explained in reference 47. For linear

analyses, averages of each paranmter from members
of a pair were employed to represent each member

to retain decoupling between symmetric and anti-

symnmtric degrees of freedoln. However, for the
batch simulation, the distinct actuator identities

were retained and were sources of coupling between
the two sylnmetries.

Turbulence

A basic assmnption nmde in computing symmet-

ric aerodynmnic forces caused by turbulence was that
randomly generated turbulence traveled, unchanged,

downstream past the model at tile fluid velocity V.
Thus, what was encountered at a reference stream-

wise location (x0, y) at time t would be encountered
at a point (x, y) at a time t + (x - xo)/V, where V

was the fluid velocity. Another assumption was that

the synlmetric turbulence downwash field seen at

streamwise coordinate :r0 resulted in angle-of-attack
perturbation elements of the form

(*.qs (xo, g, cot), t) = exp (icoot)

which had the Fourier transform

%Ls (.tO, 9, w) = 16 (w - wO)

The same symbols (c'.g., (_.qs) are used in this paper
to represent a flmetion and its transform. The
expression for the Fourier transform at an arbitrary

location, relative t.o that at. the reference streamwise

coordinate, was

(tvs (x, y _.,) = exp k-,co,, _7-.] 6 (co - coo)

The contribution, which was due to an oscillatory

component of frequency cot), to tile antisymmetric
turbulence was approximately proportional to the

spanwisc location, relative to the model centerline,
with no streamwise variation. Thus, tile Fourier

transform for this case was

The parameter bs was tile wing semispan. The coeffi-
cients of the Dirac delta functions in these downwash

representations were used to compute generalized

aerodynamic forces caused by turbulence.

6

The final assumptions had to do with the spectral

content of the turbulence. A Dryden atmospheric

turbulence model was used (ref. 48). The turbulencc
power spectral density was

_,,,,_(w)_ cr2'v 1+3(_) 2

1 + \_,v/ J

The following transfer flmction, used in the develop-

merit of tile state equations discussed subsequently,
will produce all output with the power spectral den-

sity just shown, when receiving white-noise input 1!
with the power spectral density 1/re:

!cd
S+v/3 g

which can be verified by using the following equality:

• (co)= =
re *l 'q

A break frequency COq/(2rr) of 17.23 Hz was used to
approximate the expected wind-tunnel turbulence.

Resonance peaks at 10 Hz were observed in tunnel

data from prior entries, and a range from 10 Hz

to 12 Hz was the predicted flutter frequency. A break
frequency of 17.23 Hz produces a peak magnitnde in

w q/_l at. 10 Hz.

No accurate representation of tile wind-tunnel

turbulence levels was available. Furthermore, the ef-

fect on the plant of any given turbulence intensity

would be highly dependent on the configuration and

the gust. mode shapes used to characterize the tur-
bulence. Based on prior wind-tunnel entries, the rms

turbulence velocity magnitude was estimated to be

approximately 1 ft/sec at the wing tips at a Mach

number of 0.5 and a dynamic pressure of 300 psf.

This magnitude was conservatively assumed to apply
at all test conditions. Eighty-five percent of the tur-

bulence was allocated to tile symmetric component,

and 15 percent was allocated to tile antisymmetrie

component at the wing tips.

Ill the batch simulation, a single Gaussian-
distributed random number with unit standard de-

viation was generated at each integration time step
(0.5 mscc) and scaled to provide a digital approxi-

mation of continuous white noise with a power spec-
tral density of 1/Tr (ref. 47). That single number

was then multiplied (by either 0.85 or 0.15) and used



asan input to the separatetransferfunctionsrep-
resentingsynlmetricandantisynnnetricturtmlencc.
GiventhegustIilodeshapes just discussed, this pro-
cess resulted in a constructive correlation on the

right wing (at least at the x,) location), a destructive

correlation on the left wing, and a linear variation
actress the span. Using two uncorrelated randonl

numt)ers would have been preferable with the rms

gust velocity colnponents of cr_],_,= 0.985 ft/sec and

a qA = 0.174 fl/sec to achieve all 85/15 distritmtion
whose vector sum was 1 ft/sec. The representation

employed was sufficient to evaluate the potential for

saturating tile actuator rate capal)ility, t)ecause the
larger of tile vahles %r tile left and right control sur-

face activity was used. In tile results, tim t)re(lieted

actuator rate rms responses will })e seen to be sig-

nificantly higher than those in the test aetllator rale

rms responses.

Equations of Motion

h_ vacate vibration characteristics were calculated based upon a structural nlo(tel develope(t by I/ockw(ql

International Corporation. The structural model (hwelopment benefited from experimental data ot)tain('d for

the model prior to the addition of the tip ballast stores. The vibration tests were also made on the current

configuration, and the results from these tests were used to adjust the i)redicted modal natural frequencies and,

together with aeroelastic analyses, to (tetermine whic|l elastic modes to retain in the model. Eight symmetric

and seven antisvmmetrie elastic mo(tes were ret.aine(1. St.ruetural damping was mo(lele(t as |)eing vise(ms wit h

a damping ratio of 0.015 assumed for each mode.

Equations of motion were develope(t })oth in a frequ(mey domain form, which made direct use of the tabular

unsteady aerodynamic forces, and in a finite dimensional state-space form, which emt)l(5_e(t rational fun('tion

approxinmtions to tile aerodynamic forces. The frequency domain form of the equations was

with aecelerometer outputs of the iSrm

= n (:rj, :jj)

A display of the (tet)endell(:(_ of the unsteady aerodynamic f'orees upon freq,wn('y and Math ,mml)er was

suppressed for brevity and (qarity. All the inathematieal models were gell(_rate(l with the aero(tynami(' force

coefficient data corresponding to a Maeh number of 0.5, regardless of velocity, 1)eeause Math mmd)er effe(_ts in

the low subs(nile region of the test were small. This approximation became more t)reeise as the tmmel Ol)eraling

limit was at)t)roache(t. The row vector II(:rd, 71.i) relates the jth outt)ut to unit (tist)la('ements of the generaliz(,d

coordinates _. The Kroneeker delta 5jr. is zero unless the indices match, in which ease it is rarity. This f()rm

of the equations allowe(t the mmlerical (:omputati(m of a fre(lUen('y response fimction for any outt)ut/inlmt

pair. Consequently, for a stal)le system, l)ower sileetral densities an(t rms values for any outt)ut could also t)e

computed. The mo(lal rate feedba(:k design at)preach use(t design models with the frequency domain form.

1Rational function approximations were made to the m_steady aerodynamic forces to obtain finite dimensional

state-spaee mo(tels. Reference 4(.) t)resents this al)l)roaeh. The same single lag factor per mo(te was ju(tge(t

to sufficiently represent the unsteady aerodynanlic effects, while keeping the numt)er of states manageable.

The resulting state-space models with three pairs of actuators retained were 35th order symnmtrically and

32nd order antisyInmetrieally. State-space plant representations were emt)loyed in the tra(litiomd pole/zero

loci and me(tiffed LQG design approaches. Reference 47 present.s the structure of the state-space models and

tile additions necessary to generate the batch simulation.

Controller Design Considerations in Active Flutter Suppression

Flutter Character

For tile 1989 test (teseribed here, the mo(i(d wa,s fixed in roll. This condition, together with the nearly rigid

fuselage, caused the characteristics of the AFW wind-tmmel me(tel symmetric and antisymmetric flutter to



besimilar.Tilepredictedflutter dynandcpressuresat a Machnumberof 0.5(seefig. 3) were248psffor the
symmetricaland252psffortheantisymmetricalcases.Therefore,thesimultaneousoperationof acontrollaw
foreachsymmetrywasrequired.Theflutterfrequencyineachcasewaspredictedto beapproximately11.5Hz.
Theflutter characteristicswererelativelyexplosive;at a dynamicpressureof 325psf,thepredictedtimefor
theflutter modeto doublein amplitudewasat)proximately1/10sec.

Control Law Implementation Considerations

Eachof the threeactiveflutter suppression(AFS)controllawswasdesignedin thecontinuousdomain.
Theassumptionwasmadethat nocouplingexistedbetweenthesymmetricandantisymmetricresponsefor
theAFW wind-tunnelino(tel.Figure4illustrateshowthesymmetricandantisymmctricformsof thecontrol
lawswereimplementedsimultaneouslyby thedigital controller(ref.50).Foreachpair of accelerometers,the
symmetricsignalwasdeterminedastheaverageoftherightandleft signals,andtheantisymmetricsignalwas
determinedasone-halfof thedifferencebetweentheright andleft signals.Similarly,theright andleft control
surfaceconmmndsweredeterlninedasthestunanddifferenceofthesymmetricandantisymmetriccommands
for eachpairof controlsurfaces.

Thetrailing-edgeoutboard(TEO)controlsurfaces(seefig. 2)werethemosteffectiveincontrollingflutter,
althoughtheactuatorhingemomentavailableforthesesurfaceswasonlyone-halfaslargeastheothersbecause
eachTEO surfacewasdrivenby oneactuatorratherthan two; theuseof a singleactuatorwasdueto the
lilnited spaceavailablein tile outboardportionof thewing. Tile leading-edge-outboard(LEO)surfaceshave
unfavorableaerodynamicloadingthat (toesnotrestoretile surfacesto aneutralpositionif theactuatorsbecoine
overloaded.Thetrailing-edge-inboard(TEl) surfaceshavefavorableaerodynamicloading,but theyarenot.as
effectiveastheTEOsurfacesin controllingflutter. Theleading-edge-inboard(LEI) controlsurfaceshadhigher
inertiasandlessaerodynamiceffectupontheflutter mechanismandwere,therefore,notsuitablefor FSScon-
trol. Eachof thewingaccelerometerpairswaslocatednearthehingelineofoneofthecontrolsurfacepairs,with

Right and left actuator_ _
External input _ commands _1__-_ _>,l"_

E ,-q

Right and left
sensor signals

Symmetric

Right _ Symmetric Isignals_

+ Right
actuator AFS sensor

commands control law signals

Left Antisymmetric Left
actuator AFS sensor

commands control law signals

Antisymmetric
signals

IL

Figure 4. hnplementation of symmetric and antisymmetric AFS control laws.



theexceptionof tile wingtip (TIP) accelerometers
that werelocatedapproxinlatelynfidchordneartile
wingtips. TheTIP accelerometersrespondedto the
flutter modeand,at thesametime, wererelatively
unresponsiveto the higherfrequencyinodeswhen
comparedwith theotheraecelerometers.

The digital implementationof the controllaws
hadcertainimplicationsfor thecontrollawdesigner.
Tile samplerate was200Hz. A low-passanalog
antialia,singfilter wasrequiredfor eachchannelbe-
ing digitizedto atteImatesignalstrengthabovethe
Nyquist frequency(100Hz in this case),so that
higherfrequencyharmonicsignalswouldnotcorrupt
the lowerfrequencysignalscausedby the periodic
sampling.Twoviablechoicesof analogantialiasing
filterswereprovided.Thechoiceswerea first-order
filter witha breakfrequencyof 25Hzanda fourth-
orderButterworthflter with a breakfrequencyof
100Hz. Eachof theseintroducedapproximately
the samelag in the flutter frequencyrange(near
10Hz). Only tile first-orderfilter wasusedduring
thetest,principallybecauseit providedsomeatten-
uationof outputsthat weredueto structuralmodes
in tile 30-to 40-Hzrange;theseoutputswereout-
sidethe desiredcontrolbandwidthbut within the
actuatorbandwidth.A first-orderfilterwith abreak
frequencyof 100Hzanda fourth-orderButterworth
filterwitha breakfrequencyof 25Hzwerealsoavail-
able;thesefilterswerenotviablecandidatesbecmlse
of thelackof antialiasingprotectionfromtheformer
andtheexcessphaselagfromthelatter.

The signal amplitudewas quantizedbecause
the analog-to-digitaland¢ligit.al-to-analogconvert-
ershad12bitsof resolution.Usinganaccelerome-
ter signalasanexampleandassunfingthat theac-
celerometersignalshada rangeof 409(4-209)ledto
a quantizationof approximately0.019.Thisquanti-
zationlevelisof little concernunlessthe controller
hasanextremelyhighgainsuchaswouldoccurat
lowfrequencyfor a pureintegrator.

An effectiveaverage0.5timestepdelaywasin-
troducedbythesamplingbecause,afterasignalwas
sampledat the beginningof a time step,no addi-
tional informationwaspasseduntil thebeginningof
the next time step. The controllawswereimple-
mentedin thedigitalcomputersothat controlcom-
mandsgeneratedbasedonsensorinputsreceivedat
onesamplinginstantwereheld (beforebeingsent
out) foratime"rh such that the sum of vh and 7-,, (the
time required to compute the outputs) was 5 msec

(one time step). Thus, approximately a 1.5 time

step delay was present as a result of these aspects

of the digital implementation as compared with a

continuous implementation.

Each of the controllers was designed in tile con-

tinuous domain and implemented digitally by using a

Tnstin transformation with no frequency prewarping

(ref. 51). Tile method chosen for transformation of a
continuous controller to a discrete form also impacts

the digital time delay. The net time delays assumed

in the three designs will be shown below.

Design Objectives and Requirements

The design objective for all three flutter sut)pres-

sion control laws was to demonstrate closed-loop sta-

bility up to the wind-tunnel limit of 325 psf dy-

namic pressure. This ot)jecti;_ would constitute

a 30-percent increase in the flutter dynamic pres-
sure relative to tile lowest predicted open-looI) flutter

boundary in the subsonic region.

For those control laws that had a single-strand

(i.e., single-channel) point in the feedback loop, a

predicted gain margin of 4-6 dB and a predicted

phase margin of +30 ° with respect to that point

were required throughout the test envelot)e. (This

phase requirement was a relaxation from an earlier,

unachieved, requirement of 45°.) If the law was
not truly single input/single output (SISO), then

the simple gain and phase margins were a poten-

tially nonconservative assessment of robustness, and

they will be shown to be a source of poor con-

troller performance for one of the control laws. The

control law that utilized nmlti-input/multi-output
(MIMO) analysis was judged by t)otcntially conser-

vative multi-variable margins, and the stated require-

ments were relaxed for that case to correst)ond to the

predicted robustness achieved.

Actuator rate saturation can degrade control law

performance and lead to closed-loop instability. At

the wind-tunnel linfit of 325 psf, the open-loop time-
to-double amplitude for the symmetric flutter mode

was predicted to be 1/10 see. For this instability

level, actuator rate saturation of a pair of actuators
for even a brief time in response to wind-tunnel tur-

bulence could cause an unacceptably large growth

of the flutter mode. This potential for rate satu-
ration reinforced the need to restrict actuator rate

requirements. The TEO control surfaces were pre-

dicted to have a peak no-load aerodynamic rate ca-

pability of 225 deg/sec. It was assumed that no rat('.
saturation for a three-standard-deviation turbulence

velocity magnitude was adequate for assuring that

rate saturation was sufficiently unlikely (ref. 52). A

one-standard-deviation actuator rate of 75 deg/sec
resulted. At a predicted flutter frequency of approx-

imately 11.5 Hz, this rate constraint translated to

a maximum rms control deflection of 1° (i.e., the

9
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Figure 5. Sensors and control ,surfaces used by each control law.

maximum deflection that would occur if all control

power was concentrated at the flutter frequency).

Another requirement for evaluating candidate

control laws prior to the wind-tunnel entry was to
demonstrate closed-loop stability throughout the test

envelope using a batch simulation (ref. ,17). As dis-

cussed, tile sinmlation replicated quantization effects
because of finite word length in the signal convert-

ers and imposed rate and displacement limits on the
control surface actuators. This simulation also al-

lowed both symmetries to be run simultaneously in
the presence of simulated turbulence excitation with

a separate dynamic actuator inodel for each left and
right control surface.

Design and Analysis of Active Flutter

Suppression Controllers

Three active control laws for flutter suppres-

sion were designed in the continuous domain, imple-
mented digitally, and tested in the TDT. The dark-

ened areas in figure 5 show the sensors and control

surfaces employed in each law. The next three sub-

sections present the design approach and pretest
analysis of performance for each control law. The

approaches are presented in the order of increasing
mathematical complexity.

Traditional Pole/Zero Loci Design (Design
Number 1)

OveT"view. This control law was designed us-

ing traditional complex plane mappings of poles and

zeros. The principal philosophy behind this design

effort was to avoid getting lost in complexities that
are of secondary importance with respect to the flut-

ter control problem and to reduce the problein to its

bare essentials. One step toward accomplishing this

was to concentrate primarily on the two structural
modes that participate directly in the flutter and on

the SISO zeros in the same frequency range which
result from the choice of a particular sensor pair and

control surface pair. Vibration modes dominated by

sting deflections and their associated zeros were ig-
nored, as were high-frequency modes. This procedure

was possible because of effective pole/zero cancella-
tions associated with the chosen control surfaces and

sensors and because of frequency separation between

the flutter dynamics and high-frequency modes.

Selection of sensors and control surfaces was a

necessary first step in the controller design. The
acceleromcter pair at the TIP locations was chosen

because this pair was responsive to the flutter motion

and least responsive to high-frequency modes. The
fourth-order 100-Hz Butterworth filter was used in

the controller design and analysis. The TEO control
surface pair was chosen because it was the most

10



effectivein controllingflutter. The TEI control
surfacepair wasadde(llater in the antisymmetric
controllawto improvestabilitymargins.Thedesign
plant and final controllerstructureare shownin

figure 6. In equation form, the controller was

_5,,= Kj (st _;ru'

s + o_ s2 + 2(;)_;).s + ,,.,2 _rru' (1)
I)

where

(5c = [_TEI' l

L

Tile synnnetric law was SISO. (The switch shown in

fig. 6 was open.) All parameters in the controller

were the same for both symmetries, an(t they have
t)een specified mnnerically in the appendix. The term

Kt(.s) was impleinented digitally for testing in the
TDT.

Design plant, Pl (s)

9

8 TEOc

_ STEle FW

>Antisymme_

Antialiasing _ zTIP

I filte 7

s2+2_NmNs+_oN I _

s2+2_DmD s+_o_ !

/Inverted
notch filter

Compensator dynamics

Figure 6. Block diagram of traditional pole/zero loci ('ontrol
law.

Tile steps to arrive at this controller forIn are

presented subsequently. Note in figure 6 that the
conmlands sent to the TEO and TEI surfaces in tile

antisynmletric case were dynanfieally equivalent in

that they differed only by the constant factor (d).

SISO design and analysis techniques were employed
despite the possit)ility, for the antisynmmtric law,

that the resulting robustness characterization was
nonconservative.

Straight feedback with no dynamic eonlpensation

was investigated frst for an SISO design using the

TIP accelerometer pair and the TEO control surface
pair to see whether this feedback would be sufficient

to stabilize the system, an(t if not. what tirol)Ictus

would be encountered when attemt)ting to elnploy a
simple solution. Consideration of the high gain that

was required and the desire to ensure a favorable root

locus path led to the use of a sec(md-(irder inv('rted
notch filter to be described later in this section.

A final consi(teration was that 1.t1("response of the

system to steady-state bias errors must tie acceptal/ly
small; this consideration le(t t(i the a(htition of a first-
order washout filter and resulte(t in a third-(irder

controller.

Critical zero. For the sketches of poles an(l zeros

presented in figure 7, the horizontal axis was greatly

exaggerated relative to the vertical axis to show more

detail. All t)oles and zer(/s not assoeiat(,(t with the

compensator should be considere(l to lie near th('

imaginary axis. The sketch in figure 7(at shows
the loci of poles and zeros a.s flmctions of dynamic

pressure. The poles are t.h()s(, ass(/ciate(t with the

two strongly interacthlg re(ides for th(' AFW wind-

tmmel model with no active comt)ensation, and the

zeros arise from a particular choice of sensors an(t

actuators. The pair of superimt)ose(t zeros at the
origin results from the fa('t that aceelerometers were

used for feedt)ack. A critical zero chls(qy ass(/('iated

with tile higher frequen(:y of the two interacting
modes was f, mnd for tit(, TEO contr(/l smface and

the TIP sensor. As dynamic pressure increased, the
critical zero an(t the pole associate(t with the higher

frequency mo(te stayed near each other m_ti[ just

below tim flutter dynamic pr('ssur(' ;it which l)oint

tile pole l)roke away to the right a.n(t crosse(t into the

unstable, right half of the complex plane.

The use of simple feedback will drive the closed-
loo t) roots from the ot)en-loo t) poles to the transfer

function zeros as a functi()n of feedback gain. How-

ever, given uilcertainties in the m(/del of the plant,

it. is not always clear what path the roots will take
(ref. 27). Figure 70) ) shows h(iw the systen_ nfight

be stabilized by simple fe(,dback; figure 7(c) shows

a c;kse in which no valu(, of fl_e(tllack gain exists for

which the ch)sed-loop system will lie stM)le.

Even when the desire(t path is folh)wed, the loca-

tion of the critical zero near the imaginary axis indi-

cates that a high gain wouht be required to drive the

unstable root close to the zero to stabilize the system.

One difficulty associated with high-gain controllers is
that the control surface rates required to control flut-

ter while subject to eontimml turlmlence excitation

would be large an(t might sat.urate the rate capabil-

ity of tile actuators, thus causing a loss of flutter

control. Another difficulty associated with high-gain
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Figure 7. Sketch of pole/zero loci. Arrows indicate direction of increase in either <tynainic pressure or gain.

controllers is that high-frequency modes or actuator

roots can be driven to be unstable (ref. 53).

Inverted notch filter. Dynamic filtering was

required to reduce the feedback gain required for
stabilization because of the location of the critical

zero near the imaginary axis. The intent for this
control law was to "soften" the effect of the critical

zero by placing a filter pole near the critical zero and
placing a filter zero farther to the left, as shown in

figure 7(d). The result is similar to an inverted notch.

The location of the critical zero changes as a flmc-

tion of dynamic pressure, whereas the location of

the open-loop filter pole is independent of dynamic

pressure unless scheduling of controller dynamic

parameters is used. Also, the actual locations of

system zeros are difficult to predict analytically and

can be difficult to measure experimentally. To avoid
scheduling and because of the uncertainty about the

exact location of the critical zero, the filter pole was

placed somewhat to the left of the predicted criti-

cal zero and had a damping ratio of approximately
10 percent. This placement assured that the result-

ing pole-zero interaction would cause the desired sta-

bilizing root-locus path to be achieved, even when

subjected to moderate plant variations and model-

ing errors. Using frequency domain Nyquist crite-
ria for stability margin analysis, a 50-percent damp-

ing ratio at a natural frequency 20 percent higher

than that for the compensator pole was chosen for

tile compensator zero. This zero choice was made to
simultancously maximize the gain and phase margins

of the system over a range of dynamic pressures.
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Figure 8 shows the magnitude and phase plots of

tile frequency response of the inverted notch filter.

Tile filter amplifies the control surface activity in the

frequency range predicted fbr flutter, which in this

case is approximately 11.5 tlz. Because the control

surface activity was concentrated at this frequency,

the controller made efficient use of the available

control t)ower and was fairly insensitive to modeling

errors outside the frequency range of interest.

cn 8 ........!......."----.!..-.-!.-..'.--'=..............................i.................:............

!!i!!i!i!! .... i121
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180 i i i
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Figure 8. Frequency response fin invcrtc(l notch filter in

pole/z(_ro loci control law.

It, is generally thought that successflfl designs us-

ing pole/zero cancellation require an accurate knowl-

edge of the plant; however, the inverted notch filter

wa.s evaluated using variations in the model of the

AFW. The control law was judged to be tolerant to

changes in the frequency of the flutter mode, att(t this

tolerance was (hm in part to tim robust pla(:(mmnt of

the filter pole with rcsp(_('t to the critical zero. The

result was that the stabilizing character of the root

locus did not change despite the fl'C(tU(mcy shifts.

The mmmrical values of the controller t)arantetei's

in the contimlous (tomain arc presonte(t in the ap-

pendix. The controller was implemented (ligitally by

using a Tustin transformation and a 200-Hz saint)l('

rate. The design plant employed by tim poh,/zero loci

metho(tology (lid not account for the time delays that

resulted because of the digital implementation (see

fig. 6). A "buy-back" approach was implemented,

however, w}fich approximately removed the (_ffe_ct of

the 1 time step delay that was a result of the way

the control law was implcntented in the digital com-

puter. The controller implementation was such that

the controller output, which was compute(t based on

sensor inputs and states at time tk, was not sent out

until t(k+l ). The buy-back procedure follows. The

discrete state equations for the coiltrolhw resulting

from the Tustin transformation were

x(k+l) = FdXk + Gdyt" t

/u_ = Hdx # + Edy k
(2)

or, at t(k+l )

u(k+l) = Hdx(k+l) + E,ty(k_ 1)

Because of tim time delay in sending out the con-

trol comman(t, the following was iml)h,m(mled if the

t)uy-back procedure was not (,mt)h_yc(l:

u(_,+_) = H4x # + Edy #

In the Imy-back procedure, the designer replaces H d

with H_ = HdF d and E d with E rd = (HdGd + Ed)

in the implcmente(t equation aitd makes the apI)rox-

iination that Yk _ Y(k+l)- One o})tains

' E /
u(k+l) _ H,IXk + dY#

= Hdx(k+l ) + E,tyk

Hdx(t.+l ) + EdY(#+]) (3)

The smaller that Edyk+ 1 and Edy k are (relativ(, t()

Hdx(k+l)) the })etter the at)proximation. The at)-

i)roximation is exact if E,I = 0. Th(' lead inlroduce(t

i)rovi(h's an at)proximat(, t)uy-l)ack of the onc-st('l)

comtmtational (hqay.

Predicted performance. The traditio,ml

t)ole/zero loci design was t)r('(ti('t('d through linear

analysis att(t batch simulation to provi(h' ch)s('(t-loop

stability u t) to the limit of th(' wiiM-tunn(,1 ()t)(wating

range, as summarized in cohmm two of table I. The

term qmax refers to the lllaxilnlllll dyllaIlliC t)r('ssurc,

measured in pounds per square foot, for which the

closed-loop system was predicted to })e stable.

Tabh, I. Pr(,(tict(,d P(w[ormanc(, fi)r Traditi(mal

Poh'/Z('ro Loci I)('sign

Margins

at 300 psf

l)cgrc(_s q,_,_x. Gain. Phase,

of fl'eedom psf (IB (tea

Symmetric > 350 ±7 -t-33

Antisymmctric > 350 -1:7 -t-38

1"111,_ CO]lt rol

activity

at 300 l)sf

( I)('rc('nt of

max allowed)

TEO, TEl.

[)('I'C('III [)(WC('III

73 3
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A common evaluation point of 300 psf was chosen

for each of the control laws. The gain and phase mar-

gins for tile pole/zero design were predicted through

linear analysis to exceed the design requirements at

300 psf. Other analyses, not shown, predicted that

the margins were maintained throughout the test
enw.qope. Positive and negative gain margins were

verified in the batch sinmlation at selected dynamic

pressures by individual variation of symmetric and

antisymmetric gains until simulation time histories

exhibited oscillatory divergence. Phase margins were
more difficult to veri_, in the batch sinmlation, and

only tolerance to phase lag was investigated. This
investigation was accomplished by incrementally re-

ducing the break frequency of the fourth-order But-
tcrworth filter from the nominal value of 100 Hz until

the simulation time histories showed oscillatory di-

vergence. The tolerance to phase lag was equated
to the additional phase lag because of the break

frequency reduction at the frequency of divergent
oscillation.

The rms control activity in table I is shown in

terms of a percent of the inaxinmm acceptable rms

rate of 75 deg/sec. The predicted requirements
are well within their linfits, and the TEO surfaces

are the domilmnt ones used for flutter suppression.
These results have been generated using the batch

sinmlation in the presence of sinmltaneous symmetric

and antisymmetric turbuhmce excitation.

Analyses were made which predicted that the

pole/zero h)ci control law structure was robust to
variations in the plant. In these analyses, an earl),
version of the inverted notch filter was employed

for which the compensator zero was more heavily

damped (4N = 0.707) than that ultimately seleete(t

(4N = 0.47). The robustness characteristics, to be
described, hold for both choices; the prilnary reason

for the ultimate choice of the less-damped zero was

to silnultaneously nlaximize the gain and phase mar-

gins of the system over a range of dynamic pressures.

Cases were examined with the SISO form (the switch

shown in fig. 6 was open) with both synmLetries; and
cases were examined with tile MISO form (the switch

was closed). Each version of the controller stabilized
the plant to a (tynainic pressure of 325 psf or more un-

(ter the following simulated conditions: a Mach num-

ber of 0.5 in air, a Maeh number of 0.8 in a heavy gas
test medium, and a Mach number of 0.9 in a heavy

gas test inediuin. Because the controller stabilized
these vm'icties of plants, there was confidence that

wind-tunnel testing of the pole/zero loci controller
wouhl be successful.

14

Modal Rate Feedback Design (Design

Number 2)

Overview. The design philosophy for the modal
rate feedback control law was to use linear combina-

tions of multiple aecelerometcr signals and dynamic
compensation to synthesize the flutter mode rate for

feedback to multiple control surfaces (refs. 11, 19,

and 25). The control structure used is shown in fig-

ure 9. A 1.5 time step delay was included in the de-

sign plant to account for the effects of a digital iinple-
mcntation of a continuous controller. Consequently,

the continuous controller had a 1.5 time step lead

to counterbalance the digital implementation delay.

The first-order 25-Hz antialiasing filters were selected

for analysis and design. Numerical values deterlnined

for the controller parameters are t)resented in the ap-
pendix. ]Multiple sensors were used to identify the

activity of the flutter mode not only by frequency

but also by the geometry of its characteristic mode

shape. Multiple control surfaces were used to control
the flutter inode without affecting other inodes. Iso-

lation of the flutter mode was deternfined by the fil-

tering included in the design plant, the compensator

dynanlies, and the extent to which the blending and
distributing rejected feedback interaction with other
nlodes.

Control structure definition. The blending

(xmfiqcients used for the accelerometer pairs, the dis-
tribution coefficients used for the control surface

pairs, aim the overall system gain were tile design
variables used in an optinfization procedure. The

or(lering of the four pairs of sensors used was

ZLEO

= i_TEI
VTEO

_'TIP

and tile ordering of tile two pairs of control surfaces
used was

_TEO,.

In equation form, the control law was

6,, -- K2(s)

= DIsk2T2(s ) BLNZ (4)

The controller K2(s) was implemented digitally for

testing in the TDT.

The controller dynaufics T2(s) were chosen by

the control law designer. In the flutter frequency
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Figur[, 9. Block diagram of modal rate f('('dback contr()l law.

range, rat(.' and position components arc inclu(led in

the single-strand signal t)y passing signals/)1 and B2

through one and two integrations, respectively. Ix)w-

pass filter elements ha_,ing })reak fre(luencies that

were low relative to the flutter frequency, rcferre(t to
here as stable integrators, were used in lieu of pure in-

tegrators to avoid potential high-gain (tiffieulties with

sensor bias and quantization effects. The seeon(l sta-

ble integrator (t)osition path) was included to allow
more freedom to change the phasing of individual
sensor ehamlels. A first-order "washout" filter with a

zero at the origin and a pole at a frequency below the

flutter frequency was also used to reduce rest)onse to

bias errors and low-frequency distm't)anees. Finally,
a second-order notch filter, which was ultimately im-

plemented digitally, was used to adjust the phasing

of the control action at the flutter frequency and to

reduce the response to a nonflutter mode. Tile notch

for the symmetric case was for a 5.7-Hz sting mode,
and the notch for the antisyminetric case was for an
18.3-Hz structural mode.

Coefficients attd parameter values are shown in

the appendix; the process by which the design vari-
ables were (teterndned will be described. When

examining the blending coefficients, note that tile

integrators attenuate a signal proportional to tile

frequency of tile signal. Therefore, to more readily

compare tile contributions of individual sensors used

in fee(lba(:k, each row of th(' blending coefficient ma-

trix was set)arated into a nmltit)lieative factor and

that row normalized by the fact.or. The normalizing

factor chosen fi)r the first row (one integrati(m) was
70 rad/see (ll. 14 Hz), which is a nmnher close to the

predicted flutter fl'equeney. Tile normalizing factor

chosen for the seeon(t row (two integrations) was the

square of that for tile first, row.

The method corot)ares t.tl(' pre(licte(t and a refer-

enee desired response during the opt imizat ion. Thus,

for each symmetry, individual frequency responses

were required for each (accelerom(qer pair/actuator

pair). These responses can t)e ot)taine(t eith('r
throug]l t)retest modeling or through exl)(,riment as

was (tone successfully in reference 54. Analytical fre-

quency responses were generated using Ill('/SAC sys-

tem of programs (ref. 45). The rest)onses were com-

puted using the nonstate-spaee form of the equations

of motion, thus removing the need to make ratio-
nal function approximations of the mlsteady aerody-

namic forces. Experimentally derived freqll(m(;y re-

sponses, which wer(, also used (hu'ing tim wind-tmmel
entry to improve the control law, will be (liscusscd

subsequently.

Flow diagram. Tile signals designated in fig-

ure 9 as 5c and _, represent, rest)ectively, eonmlan(led

15



controlsurfacedeflectionsand measuredlocal ac-
celerationsfor a givensynnnetry. The frequency
responsefor eachaccelerationsignalresultingfrom
eachcontrolsurfacecommand(eithersymmetricor
antisymmetric)for contiimousanalyticalmodelsof
tile AFW wind-tunnelmodelwasprecomputedfor
thefrequencyrangefrom2Hzto 64Hz;thesecompu-
tationswererepeatedfor severaldynamicpressures
andtheDequencyresponseswereretainedfor fllrther
analysis. For the purposeof control law design
(performedin tile continuousdomain),frequencyre-
sponsesrepresentingtheeffectsof thetimedelays(a
1.5Tdelaywasassumed)andof a candidatesetof
analogantialiasingandnotchfilterswerealsocon>
putedand combinedwith the frequencyresponses
that representedtheAFW wind-tunnelmodel.This
designplantmodelwasusedin the developmentof
the controllaw. Frequencyresponsesrepresenting
thetwo pathsthroughthecontrollerdynanlicswere
alsoprecomputedand storedin combinationwith
frequencyresponsesfor thedesignplant. Thispro-
cessreducedtile amountof time requiredfor each
iterationof theoptimization.

Optimization strategy. Although the normal-

ized blending and distrit)ution matrices contained

eight and two coefl%ients, rest)ectively, the magni-
tude of the largest eo(,ificient of each matrix was

factored into a system gain. Thus, these matrices

had seven and one degrees of freedom, respectively,

which, together with tile systeln gain, constituted
the nine available degrees of freedom (identified ill

fig. 9) for use as design variables ill the optimization
procedure.

The output froln the (tynamic compensator was

a single-strand point for the feedback path. The

ot)timizer was used to drive tile composite frequency
response at that point to match a simple, desired

frequency response t_(s) (see eq. (6)), which was

proportional to the idealized modal rate of the flutter

mode, generated from a continuous state-space model
of the AFW. Thus, the desired frequency response

was proportional to that of the rate of a simple

oscillator with damping ratio Q. At. the design
point chosen, 325 psf, this oscillator was unstabh'..

Figure 10 illustrates the concept of fee(tback of modal
rate to add (tamping. The value of tile gain (k)

was chosen to be 14(f] where tile damping ratio was
that predicted for the (lesign point of 325 psf. For

an unstable plant, this choice of gain corrcst)onds
to what would be found for the minimum energy

stabilizing controller.

Figure 11 shows Nyquist (or polar) plots of the

predicted Tss(s) and (tesired R(s) loop-transfer-
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function frequency responses, as defined at the single-

strand point (see fig. 9 and eqs. (5) and (6)):

TSS (s) = T2 (,s') BLNP2 (s) Disk2 (5)

an(l

k_fs (6)
R (s) = s2 + 2Q Is +

0 ft/sec_

efs

s2 + 2_fo_fs + (o2

zf

Figure 10. Block diagram of rate feedlmck.
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}log 1ok+

Figure 11. t)redicted and desired single-strand loop Iransfer
flmction; antisymlnetric, 325-psf condition.

The frequencies used ill the analysis range from
2 Hz to 64 Hz. A flfll Nyquist plot would span

frequencies from minus infinity to plus infinity and

be a sylnmetric function of frequency (with respect
to the real axis) so that the depiction of tile neg-

ative frequency portion would be redundant. The

Nyquist stability criterion requires that., for each un-
stable pole of the open-loop system, the Nyquist plot
Inust form one counterclockwise encii'clenmnt of tile

- 1 point in order for the closed-loop system to be sta-

ble. For oscillatory instabilities, tile unstable poles

occur ill complex conjugate pairs, thus requiring two
encirclements per pair. However, one of the encir-

elements would occur for the frequency range fI'om

minus infinity to zero, which is not shown. Fig-

ure 11 represents a condition considerably above the



predictedflutter dynamicpressure,andthecounter-
clockwiseencirclenmntof the -1 point indicates
that the unstableflutter modewouldbestabilized
throughfeedback.

Foractivelystat)ilizedflutter, the encirclements
will occurill the vicinity of the flutter frequency.
Gainand phasemargins,with respectto errorsat
thesingle-strandpoint, call t)erea(tdirectlyfroma
Nyquistplot (asindicatedin fig. 11)astile amount
of shift that canbe toleratedwhilestill encircling
the-1 point. Errorsthat contributeto excessphase
lag at. the flutter fl'equencywill shift the positive
frequencyplot clockwise(an(tthenegativefrequency
plt)t counterclockwise)until closed-loopinstability
is encomlteredat a frequencyslightly abovethe
flutter frequency.Similarly,errorsthat contribute
to excessphaseleadresultin ch)sed-loopinstability
at a frequencyslightlybelowtile flutter frequency.

Tile responseof modesother than the flutter
modewill be evi(h;ntasadditional"lobes"on the
Nyquistplot. To the extent that the sensoran(t
controlsurfaceblendingcanisolatetimfluttermode,
theseextralobeswill besmall.If theseh)hesarenot
small, theycouldresultin clockwise encirclements

of the -1 point, thus indicating that an open-loop-
stable mode would be driven unstat)h_, through f('(_(t-

back, at a frequency other than the flutter frequency.

Tile cost flmction for the optinfization contains

the sum of the squares of the difference between the

predicted and the desired response, multiplied by
frequency dependent weights, together with penalty
contributions for rms actuator rate violations this

flmetion is shown in equation (7):

t/ [

where R(iwT_) is the desired modal rate feedback fie-

quency response at the nth fr(_quency; Tss(i_,_ ) is

the analytically achieved single-strand frequency re-

sponse at the nth frequency; II"_,,, is the weight defin-
ing the cost of error bet.w(_en desired and achieved

single-strand frequency responses at the uth fre-

quency (_m,.) ..... is the maximmn allowable com-

manded rms rate for tile ruth actuator; (6,,,.),. .... is

the commanded closed-loop rms control rate in re-

sponse to turbulence for the ruth actuator; and I'I.),,,
is the weight penalty for violating the ruth constraint.
To the extent that the actual response matches tile

desired response, the systexn, as observed at the

single-strand point, will t)ehave as though it ha(t rat('
feedt)ack for adding damping to the mlstat)le flutter
Illo(te.

A Davidon-Fletcher-Powell optinfization routine

(ref. 55) was used to find the system gain and blend--
ing and distribution matrix coefficients for which

the cost flmction was minimized at a particular (ty-

namic pressure. Each resulting design was evalu-

ate(t at other dynamic pressures. Predicted perfl)r-
mance was satisfactory throughout the wind-tunnel

test enveh)pe.

Several schemes for s('lecting the frequency-

depen(tent weights were considered. Initially, the

weights were chosen to more heavily penaliz(' the er-
rors in a discrete band about the flutter fl'equeney

than those outside the discrete ban(t. Alternately.

the weights were chos(m which were proportional to

th(" magnitude of the desired response, thus again

most heavily penalizing errors at. the center fl'equ(m('y
of the flutter mo(te. Unifornl weighting acr()ss a lin-

ear distrit)ution of all awdlablc frequencies, from 2 Hz

to 64 Hz, was also used. The weighting us('d fl)r th('

final analytically and experiinentally derive(1 control

laws was uniform on a logarithmic frequency scah,,

which penalized low-frequency errors more heavily

than high-frequency errors comt)are(t with the linear
frequency distribution. Th(' uniform weighting (on

a h)garithmic scale) scheme exl)loits sensor t)hm(ling

and control distribution in tim h)w-fre(luency rang(,

where the me(tel is expected to 1)(_ more accurate.

The s(:tmm(" requires reliance, instead, upon dynamic
filtering to attenuate model respons(' at high fr(,(luen-

eies where the analytical mo(M is less w(ql-known.

Ill t)ractice, achievement of tim (tesir('d Nyquisl ph)t

for the single-strand t)oint was not particularly sen-

sitive to the weighting schem(' chos('n. Throughout
the design process, the initial t)art of an optimization

run would capture the bulk of the achievat)h, Nyquist

plot shaping at. the single-strand point, with only

limite(t aim very slow improvement in the cost flmc-

tion (and Nyquist plot) as the optimization was al-
lowed to COIltiIlue. However. ll()llC of the COllVerg(?IIC(?

criteria were achieved, and the values of the blend-

ing and distribution coefficients changed over tim(,,

thus suggesting that multit)h' combinations of coet:
ficients existed which wouht generate approximately

the same single-strand Nyquist ph)t and cost time-

lion value. Additional discussion of i)roblems with

this approach will be presented ill the section entitled

"Posttest Analysis."

At all times during the optimization process,
the distribution coefficient for the TEe surface was

larger in magnitude than the distril)ution coefficient
for the TEI surface. At some times, the coefficient
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for thc TEI surfacehada signoppositeto the sign
of the coefficientfor the TEO surface. Opposing
signsarereasonablefor a conditionin whicha node
linefor theflutter modeis locatedbetweenthe two
controlsurfaces.However,tile closed-looprmscon-
trol ratebecauseof turbulencefor the TEOsurface
wasfoundto be higherfor a suboptimalsolution
with opposingsignsthan for a suboptimalsolution
with like signsfor the twosurfaces.Theopposition
of signsoccurredafter a lengthyoptimizationcycle
that onlyslightlyimprovedthecostflmctionandtile
single-strandNyquistplot. (The rms controlrate
constraintswerenot activeat this time.) Because
of concernthat the twosurfacesmightbe "working
againsteachother,"thc signof theTEI surfacewas
forcedto matchthesignofthc TEOsurface,andthc
magnitu<leof thecoefficienth)r theTEI surfacewas
set to a valuethat reducedthe rmsactivity of the
TEO surface.Thisprocedureremovedonedegreeof
freedomin theoptimization.

Control surface rates. Figure 12 shows the
predicted power spectral density (PSI)) plots at a

dynamic pressure above the open-loop flutter point

for symmetric closed-loop rates for the TEO and

TEI control surfaces cruised by the modeled t ur-
buhmce. (A 1-ft/sec rms, symmetric gust velocity

was assumed.) These plots arc representative exam-

ples that illustrate the removal of undesirable high-

frequency actuator commands; they do not depict
the PSD for a control law actually tested. The con-

trol surface rms rate in (teg/sec can be calculated as

the square root of the integral with respect to the

frequency of the PSD. The design limit for the total

control surface activity was chosen to t)e 75 dog/see,
as discusse(1 earlier.
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filter
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TEl
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Figure 12. Predicted, control-surfitce-rate power spectral den-

sity caused by refit rms gust; closed-loop, symmetric,

300-psf condition.

A peak can be seen in the control surface activity
at a frequency of approximately 11.5 Hz. This
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peak represents the activity required to suppress
the critical, stabilized, flutter mode as it is excited

by turbulence. The figure also shows significant
undesirable control surface activity in the 25-Hz to

40-Hz frequency range; this activity results from

turbulence excitation of high-frequency structural

modes. An analog band-rejection filter was used to

reduce control surface activity in this region. This
filter consisted of three fairly broad second-order

notches with center frequencies at 32 Hz, 40 Hz,
and 49 Hz. The form of the individual notch elements

making up the band-rejection filter is shown below:

BRF = N1N2N3 (8)

whore

s2 + 2<Nj ,.,.%.s+ ,.,2j

Nj = .,;24- 2_DjUJnj8 4- w2j

Numerical values for the notch filter parameters

are shown in the appendix. The band-rejection filter

was used instead of a low-pass filter to keep the

resulting lag at the flutter ftcquency to a minimum,
while still achieving the desired attenuation. The

lag at 11.5 Hz, which was due to the filter, was

approximately 28 °. Both table II and figure 12 show

that the band-rejection filter attenuates a significant
portion of the undesired high-frequency comnmnds

to the control surfaces in the 30-Hz to 40-Hz range.

Prior to the use of the band-rejection filter, the

rms control rate constraints were violated, and they
actively contributed to the cost function evaluation

used in the optimization. After the band-rejection

filter was designed and incorporated into the design

plant, tile rms control rate constraints no longer
contributed to the cost function.

Tal)le II. Predicted Control Rate Re(iuction With

Band-Rejection Filter for Modal Rate

Feedback Design

[300-psf condition]

Without filter, With filter,

rms rates deg/sec (]eg/sec

TEO 138 52

TEI 11 4

See the appendix for the values chosen for pa-

rameters in the dynamic compensation, the distribu-
tion matrices ultimately selected, and the blending

matrices found by the optinfization procedure.



Predicted performance. Table III shows tim

predicted t)erformance for the modal rate feedback
controller which resulted from linear analysis and

which was substantially confirmed by nonlinear })atch
simulation. Both the symmetric and the anti-

symmetric control laws were predicted to stabilize
the closed-loop system over the TDT test path to

the tunnel limit. The gain and phase margins are

shown, with respect to errors at the single-strand

point, at the cominon evaluation point of 300 psf.

These gain and t)hase margins were predicted by lin-

ear analysis to ineet the stated requirements through-
out tile wind-tunnel test envelope. The gain mar-

gins were verified in sinmlation, at selected dynamic
pressures, by varying symmetric and antisymmetric

system gains individually until sinmlation time histo-

ties showed divergence. These gain marginx ot)tained
from sinmlation were comparat)le to those ol)tained

through linear analysis. The phase margins were not

verified through batch sinmlation.

Table II[. Pr(,dict(_d P(_rformanc(' for Modal Rate

Fc(,d|)a( k Design

Margins
at 300 psf

Dcgrc(_s qmax, Gain, Phase,

of fre(,dom psf (tB (leg

Symmetric > 325 ±9 +3i

Antisymmctric >;125 ±12 ±19

rlllS COIl(tO1

activity
at 300 psi

(t)(,rc(mt of

max allowed)

TEO, TEI,

[)(!r(!(_llt por('(Hlt

67 25

Tile predicted rms control surface rate was deter-

nfincd by using the /)atch simulation with simulta-

neous symmetric and antixymmetric turbulence ex-
citation. Tile simulation indicated that the specified
rms control surface rate limit was not exceeded for ei-

ther pair of control surfaces. Significant activity was
commanded for both the TEO and the TEI surfaces,

although the TEO surfaces dominated.

Modified LQG Design (Design Number 3)

Overview. Initial symmetric and antisynlmetric

control laws were (tesigned using a modified LQG

procedure. The philosophy behind this control law

design wa_s to obtain a mininnml energy, full-order,

optimal controller consisting of a linear quadratic
regulator and a model-based Kahnan state estimator

for output feedback and then to reduce its order
without significant loss of the full-order controller

robustness and performance characteristics. The
control law was then discretized for imt)lementation.

Figure 13 shows the analog design l)lant that con-
tained the t)_ic state-space model auglnented with

antialiasing filters and a first-order Pad6 approxinm-

tion for the digital controller 1 coinputational time

step delay. The 25-Hz first-order antialiasing filters

were selected for analysis and design. The TE() and
LEO control surfaces were used for control input, and
their collocated accelerometers were used as s(msorx

for feedback. Washout filters were added to the con-

trol law after completion of the modifie(t LQG de-

sign process. Analog notch filters were also a(tded

after tile design to improve high-frequency robust-
ness characteristics above 30 Hz. Nmnerical values

for controller parameters are t)resented in !he at)pen-

dix. In equation form, that part of the control law

which was imt)lementcd digitally is

_(, = K3(s)

= _ H(sI-F) 1G+E _ (9)

where

6,. = [ bH.;()_. 1
bTEO,.

i_ = [_LE() 1_'I'E()

±_ = Fx_ + G_

6c = Hx_ + E_

Design steps. The LQG design and order re-
duction was arrived at through the iterative lU'oce-

dure shown in figure 14. Two design I)oints (dynanfic

pressures of 300 psf and 350 pxf) were chosen where

the design plant was unstable. The flfil-xtate feed-

back, optimal regulator for each xymmetry and de-

sign point was designed with a zero weighting matrix
for the states and an identity weighting matrix for

the controls. For tile close(l-loot) system, lhis r(,gn-

lator reflects the unstable plant characteristic roots
into the left-half plane, while all other roots remain

unchanged; this represents the minimal control en-
ergy solution for stabilizing the plant (ref. 56). The
model-based Kahnan state estimator was d(,xigned

with a diagonal fictitious input noise intensity ma-
trix with elements of 0.000001 rad 2, a gust input

noise intensity of 1/144 (ft/see) 2, and a diagonal

measurement noise intensity matrix with elements of

1/144 (ft/see2) 2.
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Figure 13. Block diagram uf modified I,Q(] contrul law.
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Figure 1,i. Steps in modified LQG design process.

The full-state feedback regulator was combined
with the state estimator to generate a full-order com-

pensator that used only sensor feedback with no

direct knowledge of the states of the plant. The

resulting flfll-order controller required order reduc-

tion for implementation. The full-order LQG con-

trol law was reduced through a process of balanced
realization and modal truncation, based in part upon

the evahlation of modal residues (ref. 40). Controller

poles above 25 Hz were removed becmlse they had
little effect on the control of flutter at 11.5 Hz. A
10th-order control law was chosen since its robustness

and performance characteristics were close to those of

the full-order LQG control law. The numerical values

of tile paraIneters in the continuous symmetric and

antisymmetric control laws, designed for the 3{10-psf
and 350-psf points, are shown in the appendix.
First-order washout filters were added to attenuate

the response to bias errors, which increased the con-

troller order to 12. Additional singular value analysis
revealed the need for stability inargin improvement

in the 32-Hz frequency range. Because the open-loop

plant poles in this region are stable, signal attenua-

tion by means of an analog notch filter (see eq. (8))

with a center fi'equency of 32 Hz was added to pre-
vent the compensator from driving the modes to be

unstable in this region.

The final step was to discretize the continuous

control law at a sample rate of 200 samples per
second using the Thstin transformation. With this

transformation, the controller transfer matrix in the

analog domain and that implemented in the digital

2O
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Figure 15. Predicted dynamic pressure root loci; syumlet.ric condition; l'ailgc is frolll 0 psf to 350 psf at 50-psf increments.

domain were virtually identical at and below the

flutter frequency except for the 1.5 tittle step de-

lay present ill tile digital implementation. The

Padd approximation to the 1 time step delay that
was included in the design plant (see fig. 13) re-

sulted in a 1 time step lead ill the continuous con-

troller that counterbalanced 1 time step of the digital

implementation delay.

Poles as function of q. Figure 15 shows

tile predicted plant open-loop poles and predicted
fixed-gain, closed-loop roots as functions of dynamic

pressure for the sylnmetric degrees of freedom. The
reduced-order 300-psf control law with washouts and

32-Hz notches was used. To simplify the figure,

compensator poles and zeros are not shown. Com-

pensator poles do not change with dynamic pres-
sure when tile feedback loops are open. \Vhen feed-

back loops are closed, the conlpensator poles interact

with those of the plant and then change with dy-

namic pressure. However, for this design, the open-

and closed-loop compensator poles are stable for the

dynalnic pressure range shown.

Tile solid lines in figure 15 indicate the paths of

the open-loop poles, and the dashed lines indic, ate the

paths of the closed-loop root.s. Tile crossing point
where the ll.5-Hz flutter mode becomes unstable is

identified in the figure as 248 psf for the design model

of the syinmetric plant with no compensation and as

350 psf for the symmetric plant with compensation.

The correst)onding values for the antisymmetric flut-
ter mode were 252 psf and 325 psf, respectively. (The

root loci are not shown.)

Predicted performance. The modified LQG
control law based on the 300-psf design point was

predicted through analysis and sinnllation to provide
closed-loop stability to the limit of the wind-tmmel

ot)erating range. The gain and phase margins shown

in table IV represent guaranteed minimmn margins
for sinnfltaneous variations oil multiple channels

(ref. 57). These margins can be conservative if they
represent an unlikely combination of variations. The

margins shown here do not meet the requirements for
SISO gain and phase margins. However, because of

their potentially conservative nature, these margins

were judged to be sufficient for testing the control
law.

The closed-loop rills control surface rates in the

presence of random gust excitation are within the

specified limits. The percent of maximmn allowed
control surface activity for each pair of surfaces in-
dicates that both the TEO and LEO control surface

pairs are used to a significant extent, but the TEO
surfaces are dominant. The rms control surface rates

were generated with both symmetries active by us-

ing the batch simulation. Separate linear analyses
of rills control rate activity were performed for each
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"Fable IV. Predicted Performance for Modified LQG Design

[Laws based on 300-psf design point]

Degrees qm_.x,

of freedom psf

Symmetric 350

Antisynnnetric 325

Margins

at 300 psf

(at plant

input) 'z

Gain, Phase,

dB deg
:t=3 +18

±4 :1:20

rms control

activity

at 300 psf

(percent of

max allowed)

TEO, LEO.

percent percent

62 26

"Equivalent multivariable margins fl)r simultmmous inde-
pendent changes on all channels.

symmetry for the 300-psf controller. These analy-
ses showed that, for a unit gust intensity, the anti-

symmetric control activity was only approximately

25 percent as large as the symmetric control activity.

Wind-Tunnel Test Results

Measured Versus Predicted AFW

Wind-Tunnel Model Characteristics

A variety of information was collected during the

test. Runs that were made early in the entry es-

tablished that the uncontrolled flutter dynamic pres-

sure of the decoupled tip ballast store configuration

was sufficiently high to provide the desired flutter-
stopper capability. This capability was achieved,

however, only after adjusting the stiffness of the tor-

sional spring that is activated in the decoupled con-

figuration to avoid adverse coupling with model elas-
tic modes of approximately 6 Hz. The stiffness was

adjusted to reduce the frequency of a tip ballast store

mode from 6 Hz to 4.5 Hz. The possibility of this

requirement had been anticipated, and the stiffness

adjustment capability had been built into the design.

Flutter clearance runs were made with the tip

ballast stores in the coupled configuration to estab-

lish the uncontrolled flutter boundary for the con-

figuration that was to be tested in a closed-loop
manner. Differences were observed between pre-

dicted and actual flutter dynamic pressures. The dy-

namic pressure for antisymmetric flutter was found

to be lower than that predicted by approximately

30 psf or 13 percent based upon a large, primarily

antisymmetric response encountered at a dynamic
pressure of about 220 psf. Analysis had indicated

that symmetric flutter would occur first, at approxi-

mately 248 psf, with antisymmetrie flutter occurring
at about 252 psf.
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Subcritical open-loop runs were made to obtain

estinmtcs of plant frequency response functions. In

these runs, excitation was generated within the dig-

ital computer and sent out to an actuator pair as

either a symlnetric or an antisylnlnetric command.
A sinusoidal excitation was input with the frequency

varying logarithmically with time over a 150-see pe-
riod from 4 Hz to 35 Hz. The input and outputs

of interest were recorded digitally and processed, in

near real time, using fast Fourier transform tech-

niques to obtain plant estimates. A key difference

between predicted and actual characteristics was ev-

ident. For both symmetries, the frequencies at which
dominant frequency response peaks occurred were

somewhat lower than predicted. Figure 16(a), which

shows the symmetric case at a dynamic pressure of

175 psf, contains a comparison of predicted and mea-

sured Bode plots of ZTIP/STEOc. This sensor/control
combination exhibits similarities and differences that

are typical of what has been seen with other combi-
nations. Both curves contain the effect of the anti-

aliasing filters and a 0.5 time step delay. (The 1 time

step delay associated with controller output com-

nmnds is not present here.) The predicted and mea-
sured curves exhibit the same trend over the fie-

quency range shown, and they show good agreement
in peak magnitudes. However, a shift of approxi-

mately 1 Hz is evident in the frequency at which

the peak occurs for the lower frequency of the two

interacting modes. The analytical model had been
adjusted so that the frequencies at zero dynamic

pressure nmtched the frequencies measured during a

ground vibration test. The differences between pre-

dicted and measured frequencies must, therefore, be

related to aerodynamic effects that couht arise from
a number of sources, including errors in the predicted

mode shapes.

The phase characteristics of the response shown

in figure 16(a) indicate a frequency shift consistent
with the frequency shift for the peak nmgnitude.

(The predicted phase at the predicted frequency of

peak response is in close agreelnent with the actual

phase at the actual frequency of peak response.)
Figure 16(b), which presents a polar plot of the

curves of figure 16(a), illustrates the correspondence

between the nmgnitudc and phase frequency shifts.
The pha_se correspondence between the measured and

predicted curves is good, particularly in the vicinity
of the peak response.

If a control law has dynamics ill the flutter

frequency range, the shifted plant dynamics can

introduce potentially large phase shifts in the fre-
quency response of the loop transfer function. There-

fore, control law designers should be aware of the



o"
"O

B
¢-

Measured Predicted

5 ..........__÷....... _........!.......!......_ ...........................................

!!!!!F;>.- -.....

0.1 I _ i ; i i I

18O
..... ::;,._ ....... ]...... i ............................................

............... :-.-.: ..................

180 r .....
5 6 7 8 9 10 20

Frequency, Hz

(a) Bode plot.

3

2.5
2

== 1.5
1

0.5

o
-_ 0.5

_; 1.5

2
2.5

90

300

-30

-120 -60
-90

Measured

Predicted

Phase,
deg

(b) Polar plol.

Figure 16. Predicted and measure([ open-loop frequency re-

sponse for ZTIP resulting front 8TE() ( ; symmetric, 175-psf

condition. (Predicted response includes effects of 25-Hz
antialiasing filter and 0.5 time step delay.)

sensitivity of their designs to changes in the frequen-
cies of critical modes and should not rely strictly on

the adequacy of typical phase margin requirements.

Because none of the control laws was scheduled

with dynamic pressure, it. is more significant to con>
pare the difference between measured and predicted

frequencies at dynamic pressures that are the same

percent away from the corresponding flutter dynamic

pressures than it is to conlpare the difference be-
tween nleasured and predicted frequencies at a given

dynamic pressure. The relevant frequency shift at

flutter was approximately 2 Hz.

Traditional Pole/Zero Loci Controller

The traditional pole/zero design demonstrated

closed-loop stability up to a dynamic pressure of
about 272 psf. This test represented an increase

of approximately 24 percent relative to the observed

open-loop flutter boundary. Flutter was suppressed
simultaneously in both symmetries. The controller

stabilized the model at the 272-psf condition as in-

dicated by the decay of bursts of turbulence-induced

system response. The wind tunnel was operated at.
this condition for several minutes while time histories

for loads and for commanded control deflections re-

sulting from tunnel turtmlence were being recorded

for rms analysis. The rms control rates were only

about 25 dog/see, which is one-third of the accept-
able nlaxinnnn. The wind-tunnel safety system was

activated automatically after the model responded

to a burst of larger amplitude turbulence and the

structural loads exceeded preset limits. Because the
control law stabilized the system and was also able

to liinit the amplitude of the flutter mode for lower

turbulence levels with significant reserve rate capabil-

ity, it is speculated that increasing the feedback gain

would have kept the structural loads caused by tur-
bulence to be within the prescribed limits, at least in

the flutter frequency range; however, a reduced high-

frequency vain margin anti, possibly, smaller phase

margins would have accompanied the feedback gain
increase.

Figure 17 presents singular value assessments of

the antisymmetric control law obtained using the

controller performance evahmtion (CPE) software

(ref. 58) and experimental data. This control law

provides two inputs to the plant and utilizes one sen-
sor output. Figures 17(a) and 17(b) present singular
values of the return difference nmtriccs at. the plant

input and plant output, respectively. Large values (a

value of 1 is large) for both sets of minimmn singu-
lar values wouht indicate that the closed-loop systein

stability characteristics arc tolerant to unstructured
uncertainties at the plant input and output.

The relatively small mininmm singular vahles at
the plant input which are seen in figure 17(a) near

7 Hz would result, from errors in tim worst, possi-

ble direction and are not necessarily likely or even

physically realizable. Consequently, use of this fig-
ure to assess tolerance t.o errors may t)e quite con-
servative. Error sources that could occur include er-

rors in individual control surface aerodynamic cffcc-

tivenesses in the 7-Hz frequency region, in control

surface mass coupling terms, and in gain and phase
of commands from the controller to the individua'.

actuators. The successful closed-loop tests demon-
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Figure 17. Experimentally determined singular values for tra-
ditional pole/zero loci control; antisymnmtric, 240-psi
condition.

strated that the small but conservative assessment of

tolerenee to uncertainty of figure 17(a) was sufficient.

Only one singular value curve exists in fig-
ure 17(b) for the scalar plant output, and its mag-

nitude corresponds to the distance of the single-

strand Nyquist plot from the singular point. The
singular values of figure 17(b) also correspond to

the distance of the multi-input/single-output (MISO)

Nyquist plot from the singular point. Figure 17(b)
does not address distinct error sources in the two in-

put channels, and, therefore, it is a potentially non-
conservative assessment of robustness. Nevertheless,
the test results demonstrated that the use of SISO ro-

bustness criteria to assess MISO robustness was ade-

quate, in this ease, to obtain a successful design. The
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global minimum near 7 Hz in figure 17 was associated
with sensitivity to uncertainty in phase lead.

Modal Rate Feedback Controller

The modal rate feedback controller that was de-

signed based upon the predicted AFW wind-tunnel

model characteristics was shown, by experimentally

derived open-loop CPE, to be destabilizing at the two

highest subcritical dynamic pressures tested (125 psf
and 175 psf). The primary cause for these insta-

bilities was believed to be undue sensitivity of the

controller dynamics to frequency shifts of the critical
structural modes.

Because the design method can readily employ

experimentally derived frequency responses as inputs

to the optimization, the frequencies of the controller
dynamics were shifted to match the observed shift,

and the blending matrix was reoptimized using trans-

fer matrix estimates based upon data collected at

125 psf and 175 psf. No constraints were placed

upon rms controller rate requirements because no ex-
perimentally derived frequency responses existed for

outputs due to gust inputs. The numerical values of

the parameters in the reoptimized control laws are

shown in the appendix. Subsequent open-loop CPE

and closed-loop testing with the redesigned controller
showed that the system perfornmnce at 125 psf and

175 psf was in agreement with what had been pre-

dicted using the earlier cxperiinental data. However,
the controller destabilized the system at 185 psf with

the instability occurring at a frequency of approx-

imately 7 Hz. The source of the deficiency is dis-

cussed subsequently in the section entitled "Posttest

Analysis."

Modified LQG Controller

The modified LQG controller designed for 300 psf

(lid not significantly change the closed-loop flutter

dynamic pressure relative to the observed open-loop

dynamic pressure. With this controller operating,
antisymmetric flutter, at approxinmtely 9.5 Hz, was

encountered near the observed open-loop boundary

of 220 psf. Data from the CPE analysis indicated a

much lower antisymmetrie component of control sur-
face activity than predicted, which raised the possi-

bility that the gain for the antisymmetric control law

was too low. This aspect is discussed fllrther in the

section entitled "Posttest Analysis."

The controller designed for 350 psf was also

tested. This 350-psf controller was very similar to

the 300-psf controller, but it operated at higher gain

levels. With the 350-psf controller operating, anti-
symmetric control surface activity was significantly

higher, but the symmetric control law gain was too



high in the 21-Hzregion. The closed-loopsystem
wasdrivensymmetricallyunstableat 175psfat a
frequencyof approxinmtely21Hz. Additionaldis-
cussionofthesourcesofthesedifficultiesispresented
in thesectionentit.led"PosttestAnalysis."

CombinedPerformance

Figure18showsthe maxinmmclosed-loopst.a-
ble dynanficpressureachievedexperimentallyby
eachcontrollaw. Figure19depictsclosed-loopcon-
trol surfacermsratesasflmctionsof dynamicpres-
sure. Ttlc rms rateswereestiInatedby differenti-
atingcommandeddeflectionsbecmtserateswerenot
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Figure 18. Maximum dynamic pressure obtained during
closed-loop testing.
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Figure 19. Experimentally determined root-mean-square (rms)
control rates 0h'sign limit was 75 deg/sec rillS).

commanded directly. The three plots represent the

measured response for the three control laws during

testing. Because the TEO control surfaces were
dominant for each control law, rates are shown for

tile TEO surfaces.

All three control laws command sinlilar levels

of rnls control surface activity at common dynamic

pressures tested. This similarity r(_flects the fa('t that

all three were designed with the sam(' turlmhmce

model and the same design limits. None of the COil-

trol laws had difficulty staying within tim design liInit

of 75°/see rms. In fact, the peak nmasure(1 rills rate is
only approximately one-third of the limit for the tra-

ditional pole/zero design at 272 psf. The difference
between predicted (see tables I, III, an(t IV) and mea-

NUF(?(] rills control rate r(?quironlellts nlay h(? |)(?(tails(?

of errors in assulne(t turbulence levels an(t nlodels, ill

control effectivenesses, and in modal damping. The
low control surface rms rates indicate that a(hlitional

control power is available for improved perfornlance.

Posttest Analysis

Modal Rate Feedback Design

The test results clearly indicated that the l)retest

design and analysis associated with robustness as-
sessments with respect to errors at the single-strand

point (SISO) were insufficient. The basic problem
was that, although there was an SIS() l)oint in the

feedback loop, multiple sources existed for gain and

phase errors, that is, four pairs of sensors and two

pairs of controls. The ot)timization procedure did

not consider control law t)erfl)rmance sensitivities to
multiple, independent errors. Singular value anal-

ysis of errors at the plant input and output points

(fig. 9 shows the loop breaking points a.s dotted ovals)

provides a means, although t)otentially qlfite conser-
vative, to assess this sensitivity. Figure 20 graph-

ically illustrates the deficiency of the design. This

figure was generated using experinmntally derived

plant transfer matrix elements and the control law

developed using the experimental data. This figure
presents logarithmic ph)ts of the minimunl singular

values of the return difference matrices at the single-

strand point, the plant input point, and the t)hmt

output t)oint for both symmetries. Large nlinimmn

singular values are desirable for robustness t.o error.
Extremely small nlininmnl singular values are evi-

dent for tile return (tifference lnatrix at the t)lant

output in a frequency range n('ar 7 ttz.

The small minimunl singular values were a result
of the choice of objective function for controller l)a -

rameter optinlization. Consider the objective func-

tion (see eq. (7)) in tim typical condition in which the
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Figure 20. Experimentally determined minimum singular val-
ues for modal rate feedback control; 175-psf condition; law
is derived flom experimental data.

control rms constraints were inactive. In this condi-

tion, the optimization procedure was attempting to

increase the noneonservative, upper bound SISO sin-

gular value abs{1 + Tss(.s)} (ref. 35), and it was al-
lowed to do so at the expense of the MIMO minimum

singular values at the input _[I + K2(s)P2(s)] and

the output __[I + P2(s)K2(s)]. Extreme sensitivity of
the closed-loop system to errors at the plant output
resulted and led to destabilization by the controller.

This result emphasizes the importance of properly

capturing all the critical design trade-offs in either

the objective function or in the design constraints.

Modified LQG Design

The reduced-order controller developed using this

design process and based upon a design point at
300 psf did not raise the closed-loop flutter dynamic

pressure. The basic deficiency in the controller is
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shown in figures 21 and 22. Figure 21 shows two plots

of the determinant of the matrix [I + Pa(s)Ka(s)],

which is the MIMO Nyquist plot with zero as the

critical point. The dashed curve shows predicted val-
ues, and the solid curve shows values derived from

the experimental CPE analysis; both curves repre-

sent the antisymmetric condition at a dynamic pres-

sure of 200 psf. The control law employed was the

one based on the 300-psf design point. The small-

ness of the experimental curve relative to the ana-
lytical one is surprising. The test point of 200 psf

is only 20 psf from the observed open-loop flutter

dynamic pressure, whereas, for the analytical predic-

tions, 200 psf is 52 psf from open-loop flutter. One

would, therefore, expect the plant response to in-
crease in amplitude much more in the test than in

the analytical predictions. The indication is that the

controller gain is too low. Figure 22 presents fre-

quency responses for each channel of the continuous

form of the reduced-order controller for each sym-

metry. (The washout filters are not included.) The

antisymmetrie control law has low gain in all chan-
nels in the 9-Hz to 10-Hz flutter frequency range as

compared with the symmetric law. This difference in

gain level is in contrast to the pole/zero loci law for

which the dominant channel (_STEO,:/ZTIP) was the
same for both symmetries. The gain in the antisym-

metric channels was not sufficient to suppress flut-

ter; however, the size of the antisymmetric controller

magnitude relative to the symmetric controller mag-
nitude does not fully explain the drastic difference

between the predicted and measured MIMO Nyquist

curves in figure 21.

c 0
Its

E

-1

-2

det[12x2 + P3(s)K3(s)]

a
I

!

iJllllll: ill,l,lll ill||,llJ

-2 -1 0
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Predicted
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2

Figure 21. Predicted and measured multi-input/multi-ontput
Nyquist plot for LQG law; antisymmetric, 200-psf condi-
tion; law is based on 300-psf design point.
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Figure 22. Frequency response for modified LQG controlh'r

designed at 300 psf.

The frequency responses for the controller design

based upon the 350-psf point arm shown in figure 23

and exhibit similar but higher gain characteristics as

compared with the 300-psf design. Note the large

amplitudes in the region of 21 Hz, particularly for

_TEOr/ZTEO for the symmetric law. This peak is

present as a result of the recovery process and the ex-

istence of a lightly damped nonmininmm phase trans-

mission zero in the symmetric state-space model of

the plant. The lowly dainped controller pole is near

the mirror image (with respect to the imaginary axis)

of the noninininmm phase plant transmission zero.

Such a factor makes the design susceptible to mlcer-

tainty in the plant characteristics near 21 Hz. which

is a frequency approximately double the frequency to

be controlled. This sensitivity is shown in figure 24,

which presents predicted minimum singular values

a_ssociated with the additive plant error at 200 psf

for the symmetric degrees of freedom; the control law

designed for the higher gain, 350-psf design point,

was used. The figure reveals a controller stability

robustness sensitivity to error not considered in the

design process. An undesirably low minimmn value

occurs at a frequency near 21 Hz.
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The high controller gain near 21 Hz, coupled

with error between the predicted and actual plant,
destabilized the closed-loop system during the test.

near 175 psf. It is conjectured that better per-
formance would have been achieved with the anti-

symmetric law" designed bvused upon the 350-psf point
attd the symmetric law designed based upon the

30(I-psf point.

Concluding Remarks

Three flutter suppression control laws were de-

signed in the continuous domain for the Rockwell In-

ternational Corporation active flexible wing (AFW)
wind-tunnel model. The control laws were imple-

mented digitally and tested subsonically in the Lang-

ley Transonic Dynamics Tunnel at Langley Research
Center. All three control laws were predicted to meet

the objective of signifcantly raising the flutter onset

dynamic pressure while not violating control surface

rate and displacement limits.

Open-loop wind-tunnel testing exposed differ-

ences between predicted and actual AFW wind-

tunnel model characteristics, particularly in the fre-
quency of the flutter mode. However, the analytical

Inodel correctly captured the essential character of
the flutter mechanism.

Only the traditional pole/zero loci design was

sufficiently robust to the model errors to raise the
closed-loop flutter dynamic pressure. With the

pole/zero loci design, simultaneous suppression of

symmetric and antisymmetric flutter was success-

fully demonstrated to a dynamic pressure 24 percent
at)ove the open-loop boundary. At this condition, the

controller still provided stability as demonstrated by

its succuessful damping of response resulting from

typical bursts of turbulence over a period of 2 min-

utes; subsequently, however, a burst, of larger am-
plitude turbulence caused torsional loads to exceed

preset safety limits, at. which point, testing of this
law was terminated.

The multi-input/multi-output modal rate feed-

back controller design process did not incorporate

into the optimization procedure constraints upon

critical sensitivities to errors at the plant output and
to frequency shifts in the plant dynamics. This de-

sign led to inadequate robustness to the modeling

errors that were encountered and closed-loop insta-

bility at a lower dynannc pressure than that of the

observed open-loop condition.

The modified linear quadratic Gaussian controller
design with subsequent controller order reduction

was also sensitive to design model errors and did

not have adequate guaranteed gain and phase mar-

gins. The sensitivity and robustness characteristics

were strongly influenced by the presence of a lightly
damped nonmininmm phase transmission zero in the

design model of the plant. As implemented, the de-

sign process placed a controller pole near the mirror
image location, with respect to the imaginary axis,

of the nonminimum phase zero. This placement not

only resulted in undesirably high gain and sensitivity

to plant error at a frequency that was double that
of the mode to be controlled but also constrained

the gain in the flutter frequency region. Closed-
loop flutter was encountered during the test near

the open-loop flutter dynamic pressure at the uncon-

trolled flutter fi'eque.ncy for a low-gain controller and

below the open-loop flutter dynamic pressure at. the
frequency of the design model nonminimum phase

transmission zero for a high-gain controller.

The November 1989 test provided data for as-

sessing the fidelity of the analytical models of the

AFW wind-tunnel model and for evaluating the ro-

bustness of the control laws to real-world implemen-
tation considerations. The lessons that were learned

were applied in a subsequent effort in which four

separate flutter suppression control laws were suc-

cessfully tested not only in steady flight but also

while performing aggressive, actively controlled, roll
nlanellvers.

NASA Langley Research Center

tlampton, VA 23681-0001

July 21, 1992
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Appendix

Numerical Definition of Controller Parameters

Thermmericalvaluesarespecifiedherefor tile parametersin thecontinuousdomainrepresentationof the
controllawsthat havebeendevelopedusingeachoftile threedesignapproaches.Thesedefinitionscorrespond
to controllawstestedin tim LangleyTransonicDynamics]5mnelin Noveinbcr1989.In eachcase,a digital
implementationwascarriedout, prior to testing,usinga Tustin transformationwith no prewarpinganda
samplerateof 200ttz.

Traditional Pole/Zero Loci Control Law Definition

The parameters (see fig. 6 for their significance) have the same values for t)oth symmetries. For the

symmetric case, the switch is open in the channel commanding the trailing-edge inboard actuator pair.

a = 5.000

(N = 0.4706

w\_ = 85.00

(D = 0.09950

ccD = 70.35

k_ = 0.4871

d = -0.2500

rad/sec (0.7958 Hz)

rad/sec (13.53 Hz)

rad/sec (11.20 Hz)

deg/g (streamwise)

This design did not consider the effect of computatioIml delay. Consequently after apt)lying the Tustin

transformation, the "buy-back" procedure (see eqs. (2) and (3)) was employed to approximately counter the

effect of the delay.

Modal Rate Feedback Control Law Definition

the significance of the parameters.Figure 9 shows

157AAF =

B RF = N1 N2 Na

s2 + 2(0.08)(2(}0).s + 2002
N1 = s2 + 2(0.32)(2(}0)s + 2002

.s2 + 2(0.16)(250).s + 2502
N2 = .s2 + 2(0.48)(250).s + 2502

,s2 + 2(0.12)(31(}).s + 3102
N3 = s2 + 2(0.32)(a10)._ + alO 2

r = 1.5T = 0.0075 sec

1
INT1 = s + a I

1INT2 =
s + a2

WOF - ._ ;

s2 + 2(.,¢wws + _2
DNOT = ._2 + 2(,)_',,s + _'__

(25.0 Hz)

(31.8 Hz)

(39.8 Hz)

(49.3 Hz)
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_LEO
BI ] ZTEI

[B2] = BLN [ZTEO

t_ _TIP

[ bTEI,, ] = DIsU
(STEOc

Analytically derived control law.

Synmlet ric:

(t I =

(t,2 =

a =

o..J ji

_N =

C,D =

4 rad/sec (0.6 Hz)

30 rad/sec (4.8 Hz)

40 rad/sec (6.4 Hz)

36 rad/sec (5.7 Hz)

0.03

0.30

[[-0.3857 0.1187 -0.0482 0.0780] *70 ]BI'N = [[-0.5276 1.0000 -0.5709 0.4476] * 702

__DIS [ 1.0000

k2 = -9.9251 deg/(g-see) (degrees are streamwise)

Antisymmetric:

a I =

(12 _-

t.U_t z

_N =

_D =

BLN =

6 rad/sec (1.0 Hz)

56 rad/sec (8.9 Hz)

62 rad/sec (9.9 Hz)

115 rad/sec (18.3 Hz)

0.03

0.10

[ 0 0 31,701[-0.4165 1.0000 -0.7755 0.5353] * 702

0.9000 ]DIS = 1.0000J

k2 = -4.1000 deg/(g-see) (degrees are st.reamwise)
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Experimentally derived control law.

SyImnetric:

al -- 4 rad/sec (0.6 Hz)

a2 = 17 rad/sec (2.7 Hz)

a = 25 rad/see (4.0 Hz)

a;_ = 33 rad/sec (5.3 Hz)

N = 0.06

(D = 0.15

[[1.0000 0.0232 -0.4618 -0.1479] *70 1BLN = [0.3196 0.2871 _0.0060 _0.2931] , 702

= [045001
DIS [ 1.0000 J

k2 = 2.5000 deg/(g-sec) (degrees are streamwise)

Antisymnmtric:

_l = 6 ra(t/sec (1.0 Hz)

a2 = 38 rad/sec (6.0 Hz)

a = 42 tad/see (6.7 Hz)

w, = 103 ra(t/sec (16.4 Hz)

(x = 0.03

(_ = 0.30

[[ 0.1578 -0.0867 -0.1723 0.06771 * 70 ]BLN = [--0.3481 1.0000 --0.1156 --0.1151] * 702

_-- V0_000 ]
DIS L 1.0000 J

k2 4.3000 deg/(g-sec) (degrees are streamwise)

Modified LQG Control Laws

These matrices define tile continuous controllers designed by' the modified linear quadratic Gaussian (LQG)

procedure followed by controller order reduction. Controller results at'(, shown for design points at 300 psf aim

350 psf. The design point upon which the controller is based is inchlded as a sut)script on the state matrices.

Likewise, the subscript S refers to sylnlnctric and A refers to antisymmetrie. These matrices were designed

with a Pad6 approximation of a 0.005-see time delay included ms part of the design plant (fig. 13). Figure 13

also shows elements added after the LQG design. These elements are analog notch filters (N1 as defined

in the section entitled "Modal Rate Feedback Control Law Definition" in this appendix) an(t washout filters

(a = 6 rad/sec). The washout filters increase the digitally implemented order of the controller portion t)y 2

to 12. The inputs to the control laws arc accelerations in gravitational units, and the outputs are commanded

control deflections in degrees streamwise.
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F3oos=
-10.2606 11.4264
-11.4264 -10.2606

0 0

0 0

0 0 -1.8167 36.8465

0 0 -36.8465 -1.8167

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0

-29.4794 51.0219 0 0

-51.0219 -29.4794 0 0

0 0 -25.7801 113.8901

0 0 -113.8901 -25.7801

0 0 0 0

0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

-6.0074 132.0979

-132.0979 -6.0074

G3oos =

0.1044 0.1176-

-3.5706 -5.6319

-1.4527 0.7643

0.6457 -0.2196

5.6922 -4.3832

-4.6252 2.4555

3.9561 -3.8048

-0.1957 0.4442

(}.7371 0.5725

-1.1023 -3.1639

H3008 =

-6.9516 -0.6589 -3.0557 1.3527 -5.9818 1.0610 8.6213 -0.2974 4.2282 1.81438.7253 -1.5487 3.0937 -5.5602 10.7247 -7.8683 -22.1874 9.6035 -14.2105 -0.9051
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